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Abstract

Doppler tracking of an interplanctary spacecraft provides an unique opportu-
nity to scarch for low frequency gravitational waves. In this paper, we describe in
detail how Doppler experiments can be used to set atyupper limit on a stochas-
tic gravilational background, isotropically distributed. After reviewing the basic
equations involvedin this technique, weanalyze,in a critical way, threc methods
of data analysis, basced on differen t assuinptions about thie physical propertics of

the signal.

1 Introduction

Besides the most studied sources of gravitational radiation, usually classified inhurst
sources (e.g.supernovace)and continuous sources (e.g. binarie s), One canexplore the
possibility that the universe is filled with a gravitational background. Various pos-
sible background sources have been suggested, ranging from a random superposition
of periodic signals from binary systems, to quantum fluctuations of the primordial
universe. Of specialinterest, considering the recent COBE results, are the relic gravi-
tational waves (GW) produced during inflation. However, independently of its origin,
the principal characteristic of this signal is its continuous and stochastic nature. In fact,
from the observational point of view, the distinction hetween primordial and generated

background is irrelevant: wc canonly determine the values of p, (energy density of the




hackground) and w (its characteristic frequency) for which the background becomes
observable, with an experiment based on the Doppler track ing of aninterplanctary
spacecraft.

In these experiments, the Farth and the spacecraft are used as free end-points
of a low frequency GW detector. A radio link is transmitted from the Ba rth to the
spacecraft, col ierently transponded and sent back to the Farth, where its frequency
is measured with great accuracy. Comparing the emit ted and received frequency, one
can determine the Doppler shift Awv/vy (where vy s the nominal frequency and Av
its variation) as a function of time. This Doppler shift is mainly due to the orbital
motion, and, secondarily, to arather long series of noises. | addition, as shownby
Estabrook and Wahlquist (1975), the theoretical Doppler seq uence is also affected, with
a characteristic three-pulse response, by a gravitational wave possibly passing by.

In the following section, we will suinmarize how a GW background, assumed to be
isotropic, contribut es to the power spectrum of the Doppler signal. in §3 wc will study
the corresponding autocorrclation function gencrated by sucly a background. In §4 we
will analyze the consequences of the additional assumptionthat the power spectrum of
the GW amplitude is given by a power law, focussing our attention to two important
values of the spectralslope. Finally,in§5 we consider three diflferent techniques for the
datla analysis. T'wo of these methods, previously appliedtoreal data, arc reanalyzed
in great det ail, while the third one is new, having been used for the first timeinthe

Ulysses GW experiment, whosc results are reportedin Bertotti et al. (199.4).

2 Power Spectrum of the Doppler Signal

Gravitational waves can be described as strain waves which propagate at the speed of
light through the space and are represented by a dimensionless 4-tensor L giving the
perturbation of the metric. In the lincarized theory and in the gauge 11" (Transverse

and Traceless) for a wave which propagates in the zdirection, hog can be written in



terms of the two polarization amplitudes hy and liy as
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The Doppler effect yi(1) = Av/yg produced by alincarized gravitational plane wave hag
on the monochromatic electromagnetic signal, of frequency 1o, propagating along the di-
rection ki = (sin 0 cos ¢, sin @ sin ¢, cos @) from the Farth to the spacecraft, transponded

and then transmitted back to the Farth is given by (Ilstabrook & Wahlquist 1975)
yp() = - @ - p)h() - 2ph(t - £~ L) { (@ -1 p)h(t -~ 2¢), (2.2)
where [ is half of the Round Trip Light Time (RT11), and where we have defined
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We assume that the gravitational field is observed for atime 71, and we int roduce the

Tourier transforms
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where p stands for 4 and  x. The 732 Jormalization has been introduced since a
rigorous definition of the Iourier spectral density needs a continuous and infinite (73 -»
oo)sample, which is obviously unrcachablein arcal experiment.

W c define the mecan squared amplitude of the gravitational background as
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where Sp(w) = Jhy (W)]24 |y (w)]? is the amplitude spectral density. We also introduce

the energy spectral density S,(w) via the energy density of the gravitational background

s
Pec /(/w Sa(w) . (2.5)
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Since the GW cnergy density is also given by the Jsaacson formula (Isaacson 1 968)
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then comparing equations (2.5) and (2-6) we obtain
() = g W) (2.1)
S,(w):= - w S, (w). ),
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We want to relate the spectral energy density S,(w) to an observable quantity, i.c. the
spectral density of the Doppler signal Sy(w).
Squaring equation (2.2) and averaging over the obscrving time 77, we get the average

power coming, from the given direction (6, ¢)
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4402 cos?(wl) - 2psin(wl) sin(uwl) - 2p% cos(wl) cos(,uwf)] . (2.8)
Yor an isotropic background, the waves come from dl the directions with, statistically,
the same amplitude. Therefore, the total average POWEr js
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where R(wl) is the transfer function given by

2 2
LR 3(‘03(?37 N 2 sin(2x . (2.10)

R(x) = 22 3a? ad

Tlhe function R(a) has the following asymptotic hehavious

R(z) =1- % cosx O- (217_]?> forz > 1, (2.11)
and
R(z) = ]6‘ 2?4 02" forx <1 (2.12)
5

Now we can define the spectral power of the Doppler signal as

[ow)
1 .
() = 2 /(au Sy(w) . (2.13)
7
0
From equations (2.7), (2.9),and (2.13) wehave the following relations petween the

basic spectral quantities

| R(wl)

Sy(w) = - R(wl)S)(w) = 8- 2 So(w). (2.14)

AN ! e

3 Autocovariance Function of the Doppler Signal

The autocovariance Tunction of the GW amplitude is defir od as
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The autocovariance function of the Doppler signal y; is therefore

: +7,12
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The average over the solid angle gives the theoretical autocovariance function C'(?)
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With our assumption of isotropy, the average over ¢ gives terms of the form
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I'inally, when the average over p is performed we get

S
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where 1(1) comes from tile tcritis inequation (3.2) with ji-d ependence on tile arg ument

of 1I:
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We may rewrite equation (3.7), using the spectral decompaosition given in equa-

tion (2.4), as

I1(t) = ;I] /(Iw Si(w)(wl) coswt (3.8)
-
0
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Irom cquations (2.14), (3.4), (3.6) and (3.8) we can find the Wicner-Khintchin

theorem, relating the autocovariance function and the power spectrum of the Doppler

signal:
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4 TheSpectrum of the Gravitat ional Background

The basic p roblem for detection experim ents is the presence of noise, whichinthe case of
interplanctary spacecraft Doppler tracking dominates the expected gravitational signal.
Therefore, our aim is to set an UPPCI limit on the total energy densily associated with
the GW background, or, cquivalently,to its encrgy flux. ThisJimit will be significant,
from a cosmological point of view, if it will be comparable to the critical value p, =
311¢/8n (where Il is the present value of the llubble parameter), corresponding to a
(pscudo-)eudlidean Universe.

Several theoretical constraints canbe putonthe density parameter $0gz pg/pe of
the background, once a particular cosmological model is chosen (Carr 1980, updated
in Giampieri 1992). The most stringent one, at least inthe standard model, comes
from nucleosynthesis arguments. in fact, inorderto keep the hielium production at an
acceplable value, 2, must not be higher than the clectromagnetic density parameter
Qe 221074, Since this limit applies only to a primordial (i. e., already prese nt at the
nucleosynthesis epoch) background, animportant target of current experiments is the
gravitational background generated astrophysically after the nucleosynthesis.

I'rom the experimental point of view, on the other side, various upper limit to S,(w)
have been established; the most stringent limits are those, at w = 10°8 Hz, from the
irregularities in the period of fast pulsars. lowever, in the mlz band the Doppler
method is the only one available at the present time,

It can be shownthat,inorder of magnitude, a gravitational background of dimen-
sionless amplitude « and characteristic (prresent) period P corresponds to a density

parameter

Q ( f )2- 4.1
g ]]0]> * ()

for k= 1071 3 this gives unity for I’ ~ 30,000 sec. This estimate encourages us 10 pro-
ceed with a more accurate analysis, taking int o account also the possibili ty of exploiting

the peculiar naturce of the signal.




Iven if several standard relativistic cosmologices, as largely discussed inthe litera-

turc (see, e.g., Matzner 1968, Thorne 1987, Grishchuk 198 8), include an isotropic GW
background, very little can be said about its spectral distribution, due to our incom-
plete knowledge of the primordial Universe. Indeed, the experimental analysis of the
physical conditions presentin the very carly Universe is one of the main task of the
not-yet-born Gravitalional Astronomy.

A remarkable exc eption to this rather gloomy statement can be found in inflationary
cosmologics. In fact, predictions by these models are very precise, in terms of the
resulting GW power spectrum (Starobinsk y 1979). llowever, the conclusions that car
be drawn from several works in this field indicate that the spectral distribution is
strongly dependent on the inflationary mechanisin assumed. 101" example, for power-
law inflation, S, turns out tohave more power on larger wavelengths than for purely
exponential inflation (Sahni 1 990).

011 the other hand,in order to diginto the noisc we have to assume arcasonable form
of the power spectrumand scare]] the experimental data using the typical strut.turcs
of the function (in our casc the autocovariance C(¢)) that we use inthe statistical
analysis. We will assuine, for convenience, that the encergy density spectrum is given

by apower law of arbitrary index, i.e.
Sp(w) < b . (4.2)

Obviously, equation (4.2) can notholdinthewhole frequency range ((), oo),sincethe
resulting total energy would beinfinite. in other words, besides equation (4.2), we must
also assume the existence of a physical cut-of I', inthe lower or upper region according
to thesign of 1 4 a,inorder of having afinite energy density. It must be said that
inflationary models are the only ones able to relate these cut-ofls to physical eflects,
even if the high frequency part of therelic gravitonspectrum is rather sensitive to the
details of tlicphase transition (Allen1988). We will not make any hypothesis on the
position of these cut-offs, apart from requiring that equation (4.2) holds within our

observational window (wy, wa).
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In general, even with this simplifying assumptions, it is not possible to calculate
analytically the autocovariance function C(1). Nere, we will focus our attention on two

remarkable cases, corresponding to a = 2 and a = 0.

4.1 A flat amplitude spectrum.

If we assume that
Sh(w)l crest. < > a:= 2 (4.3)

then we are able to compute analytically C(t). By using equations (3.4) and (4.3) we

find!?
(1) - .(’;2>5(z), (4.2)

where 6(()) = 1. The evauation of the first threetermsin equation (3.6) is immediate,

while (1) may be explicitly calculated via equation (3.7) togive
(% .
I(t) =% 20 - Ot - OB - 1), (4.5)

Therefore, the autocovariance function, for non-negative times, reads

120 Ot~ 0)

C(i) i _<112> 5(1,)» —éé(i- 2£)‘| 9 {3

o0 1)|. (4.6)

Figure 1 shows the autocorrclation function, i.e. C(1) normalized to the value at the

origin. The main feature of this function is the negative peak at = 2(, of amplitude
CO/C(0): - 1/6, (4,7)

which is a direct consequence of the sinusoidal modulationof S, (S, R). Morcover
C(t)= O fort > 2(, while in the range 0 < 1 < 20 we have only the weak contribution

M deriving equation (4.4) we | ave assuned (wr, w2) -5 (0, 00), and normalized the result according
to cquation (3..5).
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from I(1), given by equation (4.5).

4.2 A flat energy spectrum.

The calculations presented in§4.1are based onthe only assum ption which allows a
simple analytical treatmment of the autocovariance function. 11 owever,{romphysical
arguments, one is temptedto exclude the case a= 2, dueto thesteep increase of §,

as w?. A more rcasonable choice could be

Sp(w): k= const. <> a= 0 (4.8)

within our experimental frequency range. As shownin Appendix A, the time derivative

of C(1) is then given by

2k 2 1\?
ac 5 [] 1 (o é) (] () } (0< t<20), (4.9)

ol 0 (Vt > 20).

Thus, C(1) has a flex pointatt = £and becomnes constant for lags greater thanthe
RTLT. Note the discontinuity of its derivative at 1= 2{ (see figure 2). The constant
value of C(t)fort > 2( is different from zero, and has to be calculated numerically.
This characteristic of C(7)turns out to be very important when looking for the best

data analysisstrategy, as discussed inthe following section.

5 Data Analysis Stratcgics

IFundamentally, in past and present Doppler search for a GW background, three dif-
ferent methods have been used, all of them based 011 the study of the autocovariance

function. We will analyze them in detail.

5.1 Irst method.

This method has been applied by Anderson & Mashhoon (1985) on the Pioncer 10

data, and is essentially based on the variance of the Doppler data. I'rom equations

11




(2.14) and (3.9) we have'

(w)Sp(w) (5.1)

ury ]
2. oy, R ;
o, C(0): 6/([4@ 2
uly
If we limit our scarchinthe low frequency region (wl << 1), then we can use the
approximate expression (2.12) for R, obtaining,
G4

05:V~ =
15

Cp,. (5.2)

llere p, represents the contribution to the energy density of the Universe coming from
the Jow frequency GW (w; < w < 1/£). In terus of the density parameter g, we can

. . . _ _ 1
yewrite equation (5.2) as (we assume here o= 75 Nm sec™! Mpc )

2
o1 x 1 0% OV J . 5.3
Ny 21x10 ( Usee) (5.3)

*J'bus, this method provides anupper limit for €, without any hypothesis on Sp, since
what wc get is alrcady anintegrated quantity. On the other hand, it P resents some
practical problems. Virst, since al sources of noise contribute to C(0), we can not
discriminate betweenthem. Sccondly, it can be applied ouly in the 1ow frequency
region, thus requiring long periods of observations, and without any clue regardi ng
how to extrapolate the obtained estiinate to the UPPCI part of the spectrum. Moreover,
unless one has a considerably long record of data, the number of experimental points
whit]) one is considering canbe dangerously sinallfrom a statistical point of view.
Iinally, we must also remember that sometines the pre-processing procedure of the
real Doppler data, explained in great detail in seve ral papers (see, c.g., Bertotti et al.
19927?), is,in a sense, cquivalent to ahigh-pass filter, implying aniestimate (5.3) too

optimistic.
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5.2 Second method.

Hellings and collaborators (llellings 1981, Hellings efal. 1981) have proposed a slightly

more complex method, based on the assumnption of a constant spectrim of (4?). There-

fore, in this section we shall make usc of the calculations presentedin§4.1. In particular,

they suggest looking for the negative peak of the autocovariance function at the RTLT,
which, from equations (4.6) and (4.7), amountslo
1.?)

ez - - 0 5.4

Since this peak, if present, is bhuriedinto the noise, they assume that the sensitivity is

dictated by the statistical noise, given by (Jenkius ¢ Watts, 1968)

4 u
1 ) 7331 {y?)?
o2(1)= ;/ri\](lr (w-]7]) tes=(my+ L7 A0OC(r - 1)] < ,<3{j‘]>, (5.5)
-u

where u =77 — t. Inother words, onccanestimate the quantity (42?) with the smallest
among C(0) and 6 0,(20), where a.(2€) is the standard deviation of the autocorrelation
function around the RT1.1. Repeating this procedure with different sampling times
At, corresponding to different upper frequencies (wp = 7/At), one hasthe possibility
of making a linear fit, since we have assumed (h?) x w2.  The slope of this linear
interpolation provides the (constant) value of 9y, and thus, from equation (2.7), the
value of S,, which can be integrated over the frequency range to give the estimated
upper limit of pg.

Also this method requires some comments. Fven if, ingeneral, increasing the sam-
pling time we get a lower 0.(2¢), we are not guaranteed, a priori, that this relationship
be lincar. Yor example, for the particular set of Voyager I data analyzed by Hellings
et al. (1981), one finds (A2) o« In(w2/wy ), implying $), « w, whit.]1 contradicts the
hypothesis (4.3). Since that hypothesis has been utilized when multiplying o,(2¢) by
6, onc could casily overcome this problem Substituting 6 with the Col’met factor, once

determined the real deprenden ce of Sj onw. *1'0 be more precise, we have plotted, in




figure 3, the value of the autocorrelation functionatt : 2(, as a function of the spectral
index a. A's one can see, the error made by Hellings et al. is less than 20%, but one
would get very diflerent results if redder spect rawere €onsi dered,

We propose to modify the previous 11¢t Jiod in the following way. Irom equa-
tion (2.14) wesce that, when Sy, is constant, Sy is proportional to the filter R. This,
inturn, is wellapproximated by a sinusoidal function for frequencies above 1 /31 (sew
¢q. (2.12), andlstabrook & Walilquist 1975). Thercfore, the scarch of the GW back-
ground, with the assumed spectralindex a = 2, reduces to the search of sinusoidal
signal,of ‘Known ‘pulsation’ 2{,in the ‘time’ sequen ce represented by the Doppler
p ower spectrum Sy. This kind of analysis is very common in astronomy, for example
inthe search for X-binaries.

Thefirst step consists intaking the power spectruin of the data which should contain
the sinusoidal signal, i.e. Sy(w),and the’11 look for a peak in the expected channel,
corresponding to the lag 7 = 2£. Recalling equation (3.9), we will thus consider the
function

A(l) : (-C(”)? , (5.6)

o,

where o, is thestandard deviation of the autocovariance function. As we shall now see,
this normalization simplifics the statistical properties of A, when the noise is normally
distrib uted. In fact, if y(f) is a gaussiannoisc with zero average and unit variance (Sew
fig. 4a and 4b), then its power spectrum S (fig. 4¢) is distributed as a x? function with

two degrees of freedom, or
f(S)=¢*® (5.7)

I'igure 4d shows the periodogram of thespectrallines of S, together withthe x2 function
(5.7). Since the autocovariance function is also normally distributed, one can easily

show that the distribution function of A(fig. 4¢)is a yv? withone degree of freedom,
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1 ¢ A?

J(A) - Von VA (5.8)

In particular, its average is g == 1 and ils variance is a2 . 2. Figure 4f shows the
probability distribution of A, together with the expected distribution (5.8). Note that
the functions (5.7) and(5.8) have no free parameters, being by definition normalized
to one.

Setting a threshold condition Age for the autocovariance function - which can
be done using well known statistical techniques - one can assert the detection of the
gravitational signal with a given confidence level if A(20) > Aye; otherwise (and this
is the case we are usually dealing with) it isonly possible to give anupper limit.

Yollowing lellings ¢t al., but taking into account the previous remarks, wecompute

the upper limit on (h?) using (5.4) and (5.6)

(h*) = 1204/ A(20) (5.9)

and repeat this procedure for diflerent values of thesampling time Al. Then we check
that the relation between (h2?) and 1/At is lincar, inorderto ensure the consistency
of the analysis withthe hypothesis S, = const., and eventually, from the slope of
this linear function, we deduce the constant value of Sp, which gives, after a trivial

integration, theupper limit on pg.

5.3 Third method.

The last method assumes the hypothesis S, = const. over the experimental bandwidth
(wy,w2)-Thus al the equations of scction§4.2apply in this case. in particular, we
have scen that the autocovariance function C(1) takes a non zcro constant value fo
lags greater than the RTLT (sce equation (4.9)); we are going to exploit this feature to
set anupper limit onthe energy content of the gravitational background.

As in the previous seclionweshall usc the normalized function A, defined by equa-



tion (5.6). Its statistic-al properties havebeen thoroughly investigated in the previous
subscction.

We also indicate with A, the constant GW contribution to A(1) for t > 20, Of
course, the autocovariance function C(t) fails to become exactly constant, due to the
presence of noise.  Apart from statistical noise, the main contribution, for t > 2¢,
comes from the plasma and the troposphere (Hellings 1 9S1 ). Regarding the latter,
it is possible to show that €, (1) ~ 1" V3 fort >> 2(. The plasma contribution is
more complicated, since its effect is distributedalong the whole lig ht path, not just at
the beginning and the end. However it can be shown having an analogous decreasi ng
behavior as ¢ increases. Ior more details, sce Appendix B, where the countributions
of the tropospherc and plasma noise to the autocovariance function are analytically
computed in the limit ¢ >> 2(.

Thus, we can sct an UPPCr limit to A, taking the average of A(7) over the interval
2¢ < 7 < Tyaxs Where 7,4 1S the maximum allowed value for 7, i.c.

A S ,,]- - /(/7 A(7). (5.10)

26

In an ideal experiment, ,fa\s simply determined by the duration 77 Of th ¢ observa -
tions. Unfortunately, in practice the extraction of the real time series from the raw
data invaolves a complex procedure, described else w-here (Bertot tiet al. 1 992), which
strongly aflects the low frequen cy region Of thespectrum. Therefore, one should first
look at the power spectrum of the whole passage | and then carefully decide Wl iere to
locate the minimum frequency, or cquivalently 7,,,.x-

Finally, the upper limit A, is numerically related to anupp’ €’ limit on the (assumed)

constant.§, through the equation

‘ VA
Spt 1w oV Ay e (5.11)
g /(lw R{wl) (?os 2wl
. w
(725

The total energy content of the gravitational background in the experimental band
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widt b (w, ,w2) is thus given by

(w2' wl).
pac -0 S, (

5.12)

In order to test the compatibility of the iypothesis S, = const. with the data set, a
safe way to proceed is to repeat the whole procedure sampling the data at different
rates, and compare the resulting energy densities pg. 1he consistency of this method
requires that p, increases lincarly withthe samplin g rate 1 /At = w2 /%, or, in other

words, that S,,as given by equation (5.11), remains approximately constant.,

6 Conclusions

We complete our work With g brief comment regarding the expected results from the
three methods presented hiere. As we said, the first method usually gives good, i.e.
low, upper limits, asa consequence of various systematic cflects. Iven if these limits
arc presumably higher than the expected values for pg, one cannot consider them as
truly conservative, in the sense that a considerable fraction of signal could be rejected
during the data analysis.

Regarding the last two methods, their conservative quality is obtained to the cost
of their weakness. Inother words, the UPperlimits obtained with methods 2 and 3 are
valid if and only if the underlying assumptions about the spectral slope of the signal
(e = 2in the first case, @ = 0in the sccond one) are true. Iowever, it sounds reasonable
to believe that the upper Jimits obtained with these hypotheses remain valid also for
more general spectra than those considered here. Hopefully, in the near future, the
detection of a GW background in some region of the frequency spectrum, presumably
above the Doppler range, will give us a clear indication about the spectral prop erties
of thesignal to be scarched for wit]) a Doppler experiment.

Among the three methods described, thie last one is certainly the most promising,.
In fact, as we have sewn, the upper limit 011 p, is obtained, inthis case, throughan
average of the autocovariance function over alarge number of points above the RT'1T.

Since the main deterministic sources of noise do notcontribute considerably to this




part of the autocovariance function, onc is expecting a sharp deercase in the stochastic
noise level as the average is performed.

In this paper we have considered only the case of a single experiment. In principle,
the unknown stochastic nature of the GW background makes it impossible to claim
a safc detection in a single spacecraft experiment. This fact suggests us to perform,
when possible, coincidence experiments, where a cross-correlation between the outputs
could allow the extraction of a common signal from various independent noises. An
experiment of this kind has been performed during last spring, when the three space-
craft Galileco, Mars Obscrver, and Ulysses had been continuously and simultancously

tracked for two weeks.
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Appendix A
IFrom equation (2.7), with S, = k&, we get Sp(w) = 167 kw™?, and therefore cqua-
tion (3.4) gives (sec also note in §4.1)

‘K”d(i”)‘f’f Conk[O(1) 4 A, (A1)

where Ais an arbitrary constant. }rom equation (3.6) wc thus find

dl

iC _
dt’

1 1 2
Y 8k O - SO - 90) - SO 42042
- - gl O(1) - Ot - 20) - {0t 420432

ar (4.2)

The derivative of 1(1)is easily found fromequation (3.7), since al we have to do is
to modify the integration limits accordingto the argument of the Heaviside function.

rJ‘ll(‘l result 1S

G emyqen - 20400 -y LB 200 "/ﬁ)zl-?k (A.3)
di 3 ( 4 )

Inserting equation (A.3) in cquation (A.2) we eventually find

2rk 21 1\?
1C R - .2 1.5
’((1(1 = 3 [] | (5 K><J 1” (0< <20, (A1)
| o (w > 20),

independently fromn the value of the arbitrary constant A.
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Appendix BB

Here we calculate the behaviour of the autocovariance function C(2) for the troposphere
and plasma noisc for lags greater than the RTLT,
The theoretical expressions Cp(1) and Cp(1) has been derived by Hellings (1981)

(cquation [47]):

o1 (1)

C‘:[({) ’ -]O(A{)Qiof(?[’j,/\{) ’ (];'])

(L) - Ro), 4 AL
,' > - g - s ' ];. 4
(] (t) ]O(A{)Q])O ]‘,0 7.4 (]7 Y ( ?)

where Zo and Po are the reference levels of the troposphere and plasma noise power
spectrum, At is the sampling time and R and Iy arc the heliocentric. distances of the

spacccraft and of the carth. The function f(x,1, Al) is:

] K 5/
f(z,1,AL) - ;][.7: - APE e g AL

]
4

- ;]] [t4 At -2 l{‘/a - ;]] | @ 14 Al ]5/3
' [ ALY : [1- At
2 ' 2 o
] . 5/3 ] 5/3 5/3
»-2|a.41,| »E)]nr»l[ - |t (1B.3)

Expanding f(z,1, At) for t > 2( (i.c. 1> 21 Al because @ < 20 and At < 20) to the

sccond order in (24 At)/t, 2/t and At/i, we have:
. 10 2,-1/3 - 4/3
flz,1,00) = 9 (At 4+ 0t ). (B.4)

From equations (B.1), (B.2) and (13.4) the asymptotical expressions of the autocovari
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ance Tunctions become:

1 .
Cat)= Vv (3, )t 14 00, (155)
and
371\ /1 1 ,
Cp(t) = '\g ](:3> (']{3 - ’])3> 7’01»]/5[] 1 0(r ])] (13.6)
0 t
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Figure Captions

Figure 1

Autocorrelation function, C(1)/C(0), for a == 2. Time is expressed in units of RT1LT.

Figure 2

Autocorrelation function, C(1)/C(0), for a = 0. Time is expressed in units of RTLY.

Figure 3

The autocorrelation function at t = 2¢, as a function of the spectral index a. The

dashed line represents the value 1 /6, which corresponds to = 2 (see equation (4.7)).

Figurc 4

Statistical properties of a gaussian signal. (@) randomly generated gaussian noise y,
(b) its distribution function, with p =~ O ando =~ 1. (¢) power spectrum S, of y, (d) its
spectral distribution. (¢) our function A, (f) its distribution function. In figures (b),
(d), and (f), the abscissa ’Amplitude’ represents the line amplitude inunit of standard
deviation. The dashed lines infigures (d) and () represent, respectively, the theoretical

functions (5.7) and(5.8).

23




(ITIY] 8wy




(LTIY] 3wiy

(0)0/()0

2 a4nbig




0
7 o 4 L O -
| -
- - o
NO
-
|||||| o
|||||| = = = - — - — = —_ —
\V
A Q
| =
- - O m
=)
Ul <




)

$,0) (=71

10~ aor

A7)

107 107 107 10~ o0 04

(a)

R B i e B o o e B e R T T Dok L L Sy

"""f""u’ vty Tr,‘E

)

ki

R o Ll T WO B 3 LR TS SPEParY PO DO | E T
107 ERT Rt Ryt s et et e

time [sec)

(c)

g{.,, ey e
=1
& @1
4
]
- 3
S

w0t

-

' ' .
Bx107Y 0.0 0015 0.02

S PP
°

[#=2)

(e)

Ao e TN et B e e R e T - -

LA
2

‘0 *00 1000

)

]
1
1
!
1
1)

T R S W NP P S SV TN [P W .
L] 8000 w“ 1.5xl0“ hlo“ :.5“?‘ 3-(|(1i 3sxi0! Joua‘

time lag[sec]

'S
L

Log

)
£l

LogProdabizity D

Log[Prodabllity Density]

[Probability Density)

P

-3

N A i TRV SO

. _.J/.,. LIRS PRSPPI S SR [ PO NN }l,A “a
-3 -2 -1 o 1 2 3

Amplitude

(d)

~
~
~ d
~
.
R o RGP PRIPIEY DUr SR STy
) 1 2 3 « [
Amplitude
o
A e e e B S A T T S
—
——
R S N I Y e adaaa ul oaaa aaa o aaiaadla. masa bt
[} [1] t 18 2 2% 4
Amplitude

4—'.3,4



